Unity Physics Training Magnetic Field Effects on the MV Dose Distribution

第2版:2021/6/30 *E008222/01*

© 2019 Elekta all rights reserved. Confidential and proprietary information.

Objectives

 磁場がビーム内の粒子にどのよう に影響するか、そしてそれが線量 分布にどのように影響するかの理 解

2. 磁場が検出器の応答にどのように 影響するかの理解

Lesson Objectives

- ローレンツカ
- ジャイロ半径
- 電子の及ぶ範囲

At the end of this section you will be able to discuss the basic concepts of how charged particles behave in a magnetic field.

ローレンツカ

磁場中を移動する荷電粒子は、その速度と磁場の両方に垂直な方向に力を与える。

ローレンツカ 1.5 T Magnetic Field No Magnetic Field 電子(赤)は散乱し続ける。 ただし、それらの軌道はローレンツカの影 響を強く受ける。

この画像で磁場はどちらの方向に向いていますか?

 \vec{F}

ジャイロ半径

回転半径 r_g (in the absence of scattering) は次の関数:

- 磁場の強さ B
- 磁場に垂直な方向の電子速度 v」

$$r_g = \frac{\gamma m_0 v_\perp}{|qB|}$$

電子の及ぶ範囲

相互作用間の電子の軌道は磁場の中で曲がる。

電子が長さsの弧に沿って点Aから点Bに移動する場合、この経路は点Aと点Bの間の長さLの直線経路よりも長くなる。

その結果、電子の線形範囲は磁場内で減少する。

- 深部線量分布
- ・ 横方向の線量分布
- 不均質領域

At the end of this section you will be able to discuss how the magnetic field affects the dose distribution.

クライオスタットからの電子混入は 磁場によって一掃される。

表面線量の寄与が排除される。

患者に入射するビームは 本質的に純粋な光子線となる。

MAGNET OFF

MAGNET ON

新しい形の電子混入がある。

Spiraling contaminant electrons (SCE)

横方向の速度成分とともに空気中で生成された、または患者から放出された電子は、 照射する部位以外にらせん状にぶつかる可能性がある。

"大きな照射野の場合、SCE線量は散乱、漏 れ光子からの線量と同じ大きさになる"

- Hackett et al.

Hackett et al. (2018) Phys. Med. Biol. 63 (9)

PDDが磁場によって減少する。

これは、深さでの線量がわずかに 変化するだけで、主にdmaxでの 線量が増加するため。

dmaxは磁場内では、照射野の大き さによる変化は小さい。

これは、ビルドアップ領域におい て電子混入の変動がないため。

横方向の線量分布

電子はローレンツカの働く方向に向かって偏向される。 これにより、線量分布が非対称になる。

Monaco の計算 3x3 cm と10x10 cm

横方向の線量分布

10 x 10 cm2クロスプレーンプロファ イル(IEC X方向)

- Unityには-Y方向に1.5Tの磁場がある。
- ローレンツカは電子を優先方向に偏 向させる(+X)。
 - 半影に非対称性を及ぼす。
 - プロファイルを約1.5mmシフ トします*
 - * 50%の線量ポイントの中点から測定

不均質領域について

不均質- Electron Return Effect

電子がある媒体から密度の低い別の媒体に移動すると、ループバックして最初の媒体に再び入る電 子の数が増加する。

2番目の媒体の密度が最初の媒体よりもはるかに低い場合、戻る電子の数が多くなる可能性がある。 これは、高媒体から低媒体への境界面での線量増強に繋がる。 これは、Electron Return Effect (ERE)と呼ばれる。

不均質- Electron Return Effect

EREの結果は以下の通りとなる:

- 高密度から低密度に移行する
 際のホットスポット
 (例:組織/空気 境界面)
- 低密度から高密度に移行する
 際のコールドスポット
 (例:空気/組織 境界面)
- ビームが空気または低密度材 料に出る場合の出口線量での ホットスポット

- 電離箱検出器
- 半導体検出器
- アレイ検出器
- ・フィルム

At the end of this section you will be able to discuss how the magnetic fields affects commonly used detectors.

電離箱検出器

電離箱検出器 – メカニズム

磁場は、電離箱の空気空洞内の電子の経路長を 変化させる。

 $\vec{B} = 0 \text{ T}$ ____**> →**

電離箱の応答は、湾曲した軌道に沿った空気空 洞で検出可能なスペースに依存する。

Figure 8. Schematic of the electron tracks depending on their own energy and the external magnetic field. Configuration I: (a) 1 MeV, schematic of the electron tracks at 0 1 and 2 T, (b) 6 MeV, schematic of the electron tracks at 0 1 and 2 T.

Meijsing et al. (2016) Med. Phys. 43(8), 4915-4927

 \otimes

 $\vec{B} = 2 \text{ T}$

電離箱検出器 – Air Gap Effect

サブミリメートルのエアギャップ(0.1 mm程 度)は、電離箱の応答に大きな影響を与える可 能性がある。

これは、電離箱の回転がなどからなる周辺の空気量によって起こる。

固形水は注意して使用する必要がある!

リファレンス線量測定は水中で行う必要がある。

フィルムの測定にも影響を与える可能性がある。

大きすぎて、0.1mmのエアギャップでは大き な影響はない。

この効果はEREによるものではありません。

電離箱検出器 – Air Gap Effect

Detector Effects

E_{kin}[⊥] (MeV) $0.0 \quad 0.2 \quad 0.6 \quad 1.1 \quad 1.6 \quad 2.1 \quad 2.5 \quad 3.0 \quad 3.5 \quad 4.0 \quad 4.5 \quad 5.0 \quad 5.5 \quad 6.0 \quad 6.5$ 1.2% 1.0% Contribution 0.4%

15 16

14

12 13

10

11

半導体検出器

ダイオードとダイヤモンド検出 器の応答も磁場の影響を受ける。

これは、磁場強度と検出器の向きにも依存する。

半導体検出器

シールドダイオードで測定さ れたプロファイル形状は、他 の検出器で測定されたものと は異なる。

それらは、磁場なしで測定さ れた形状により似ている。 (正確ではない)

有効な測定点

磁場はまた、電離箱の測定有効点をシフトする。

シフトは電離箱の中心に近づく。

1.5 Tでは、シフトは約半分に減少する。

有効な測定点

シフトは検出器に依存する 1.0 1.0 ~±1mmからの範囲 0.9 0.8 Detector Signal Relative Detector Signal - PTW 31021 Semiflex 3D PTW 60016 Diode P PTW 30013 Farmer Relative I • PTW 31022 PinPoint 3D 0.3 - PTW 30013 Farmer 0.2-PTW 31021 Semiflex 3D PTW 60018 Diode SRS PTW 31022 PinPoint 3D PTW 60019 microDiamond 0.1 PTW 60018 Diode SRS PTW 60019 microDiamono PTW 60016 Diode P 0.0 0.0--3 -2 -1 0 1 2 3 4 5 6 -6 -4 5 -56 Off-axis Distance (cm) Off-axis Distance (cm) O'Brien et al. (2017) Med. Phys. 45(2) 884-897 Elekta

横方向のシフトも磁場によって引き起こされる。

Detector Effects アレイ検出器

重要な設計上の考慮事項:

- 電離箱またはダイオードを使用していますか?
 - 測定シフトの有効点は、使用する検出器の特性によって異なる。
 - ・ ガンマ解析でDistance-to-Agreementに影響を与える可能性がある。
- シールドダイオードを使用していますか?
 - ・ 線量が正しくない可能性がある。

所有の機器の特徴を知ることが重要

Recommended reading:

- Smit et al. (2014) Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field. Phys. Med. Biol. 59(7), 1845-55
- Gargett et al. (2015) Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI-LINAC systems. Med. Phys. 42(2), 856–65
- Houweling et al. (2016) Performance of a cylindrical diode array for use in a 1.5 T MR-linac. Phys. Med. Biol. 61(3), N80-N89
- Ellefson et al. (2017) An analysis of the ArcCHECK-MR diode array's performance for ViewRay quality assurance. J Appl Clin Med Phys 18(4), 161-171

フィルム

Reynoso et al., Med. Phys. 43(12), 6552–6556 (2016).

ラジオクロミックフィルムも磁場の影響を受ける。

左側のデータはGafchromicEBT2のもので、 照射が 磁場中で行われたかどうかによって、キャリブレー ションカーブが異なる。

安全のために、磁場で照射されたフィルムに基づいて フィルムのキャリブレーションカーブを作成する必要 がある。

Thank you

© 2019 Elekta all rights reserved. Confidential and proprietary information.