IMRT Commissioning "AAPM TG 119"

エレクタ株式会社 プロジェクト統括部 アプリケーションフィジックス 2020.08.01

1.TG119とは?

2. CT画像を取り込みましょう

- 3. 治療計画を作成しましょう
- 4. 患者QA用ファントムを登録しましょう

5. QAプランを作成しましょう

6. 実測検証しましょう

7. まとめ

1. TG119とは?

「AAPM Task Group 119」とは?

- ・IMRTの治療計画と実測検証に限って、多施設でコミッショニング 試験を行った報告(米国10施設)
 - IMRTのコミッショニング全般が書かれているわけではない
 - 例えばフェンステストなどのQAは含まれていない
- ・<u>治療計画パート、線量検証パート</u>と、2段階の試験
- 多施設試験の報告であるが、これをガイドラインと見なして実行 することは可能
- 他施設との比較によって大幅なエラーが生じていないか確認できる
 (比較する場合は同様の手法で行わなければならない)

実施する時期は?

以下の項目が終了している必要がある

- 治療装置のコミッショニング
- ビームモデルのコミッショニング
- カウチモデリング

参考資料:「カウチモデリング」※弊社HPよりダウンロード可能

https://forms.elekta.co.jp/software/download/res_monaco.html

• QA機器の取扱説明、特性の理解

TG-119 Reportを構成するデータ

- レポート本体
- •ファントムのCT画像(1個)と輪郭(4個)

・結果を記入するためのExcelシート

TG-119レポート

IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119

Gary A. Ezzell Department of Radiation Oncology, Mayo Clinic Scottsdale, 5777 East Mayo Boulevard, MCSB Concourse, Phoenix, Arizona 89054

Jay W. Burmeister Wayne State University School of Medicine, Karmanos Cancer Center, 4100 John R Street, Detroit, Michigan 48201

Nesrin Dogan Department of Radiation Oncology, Virginia Commonwealth University, 401 College Street B-129, Richmond, Virginia 23298

Thomas J. LoSasso and James G. Mechalakos Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065

Dimitris Mihailidis Department of Radiation Oncology and Medical Physics, Charleston Radiation Therapy Cons, 3100 MacCorkle Avenue Southeast, Charleston, West Virginia 25304

Andrea Molineu RPC, UT MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030

Jatinder R. Palta Department of Radiation Oncology, University of Florida Health Science Center, 2000 Archer Road, Gainesville, Florida 32610–0385

Chester R. Ramsey Thompson Cancer Survival Center, 1915 White Avenue, Knoxville, Tennessee 37916

Bill J. Salter Department of Radiation Oncology, University of Utah, 1950 Circle of Hope Drive, Salt Lake City, Utah 84112

Jie Shi Sun Nuclear Corp., 425–A Pineda Court, Melbourne, Florida 32940

Ping Xia Department of Radiation Oncology, University of California, San Francisco, California 94143–1708

Ning J. Yue Department of Radiation Oncology, The Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey 08901

Ying Xiao^{a)} Department of Radiation Oncology, Thomas Jefferson University Hospital, 111 South 11th Street, Philadelphia, Pennsylvania 19107

(Received 15 May 2009; revised 4 September 2009; accepted for publication 5 September 2009; published 27 October 2009)

TG-119 IMRT Commissioning Tests Instructions for Planning, Measurement, and Analysis Version 10/21/2009

DISCLAIMER:

This publication and associated spreadsheets and digital files are based on sources and information believed to be reliable, but the AAPM, the authors, and the editors disclaim any warranty or liability based on or relating to the contents of this publication.

> The AAPM does not endorse any products, manufacturers, or suppliers. Nothing in this publication should be interpreted as implying such endorsement.

()Elekto

TG-119 Reportのファントム画像と輪郭

2018/05/16 17:14 圧縮 (zip 形式) ... 13,836 KB

- ・画像はどれも同一だが、4通りの輪郭が用意されている
- ・MonacoはCT画像1つにつき1通りの輪郭しか持てない。 従ってインポート時に分けて処理する必要がある。

TG-119 Excelシート

XI	B 5 0					TG119_Data_Report_F	orm-10_21_09 [互換モード] - P	Excel
<u>דר</u>	イル ホーム	挿入 ページレ	イアウト 数式	データ 校閲	表示			
1	🦌 👗 切り取り	Arial		- 10 - A A		◎ - 👘 折り返して全体を表示	する 標準 -	🙀 🐺
出り	 付け ▼ ● ◆ 書式のコピー	-/貼り付け B I	<u>u</u> • 🖽 • .	🏷 - 🛕 - 💆 -	• = = = •	∈ = □ セルを結合して中央撤	iā • 🖓 • % • €.0 .00	条件付き テーブルとし 書式 * 書式設定
	クリップボード	r <u>s</u>	フォント		G.	配置	「」数値 「	スタイル
G2	2 * :	$\times \checkmark f_x$	=ABS(G19)+1.96*G20				
4	A	В	С	D	E	F	G	Н
1	Chamber type		Chamber volume					
2	Planned dose sho	ould be an average	over the chambe	r volume				
3								
1	Chamber measu	irements						
5	Test	Location	Prescribed			High dose region	Lower dose region	
6			Dose/Fraction	Measured dose	Planned dose	(measured - plan)/prescribed	(measured - plan)/prescribed	
7	MultiTarget	Isocenter						
3		4 cm superior						
		4 cm inferior						
0	Prostate	Isocenter						
1		2.5 cm posterior						
2	Head/Neck	Isocenter						
3		4.0 cm posterior						
4	CShape (easv)	Isocenter						
5		2.5 cm anterior						
6	CShape (hard)	Isocenter						
7		2.5 cm anterior						
8								
19					Mean	#DIV/0!	#DIV/0!	
20				S	tandard deviation	#DIV/0!	#DIV/0!	
1				Ĩ				
22					Confidence Limit	#DIV/0!	#DIV/0!	
3				ci	= imeani + 1 96	σ		
	Ba	ise data 🛛 Plan	ning Prelim	inary Cham	ber Film	Field by field (+)		÷ [4]

結果を入力すると、MeanやConfidence Limitが自動算出される。

これらが、TG119と比較する数値となる。

9 | Focus where it matters

データをダウンロード

https://aapm.org/pubs/tg119/default.asp

AD AM	ERICAN ASSOCIATION	Home Directory Career Services Continuing Education BBS Contact					
PD of Pl	HYSICISTS IN MEDICINE						
Improving Health Through Medical Physics	PUBLICATIONS						
Login	Test Suite by Task Group 119						
AAPM	The material was prepared by TG119 to assist with IMRT commissioning pr	ocess. It is a test suite of mock clinical cases					
Public & Media	for IMRT planning and QA measurements.						
International	AADM grants permission to equipment manufacturers to use the dataset w	with the use of the following disclaimer:					
Medical Physicist	www.wigrands.permission to equipment manoractivers to use the dataset, v	and the use of the following disclaimer.					
Members	DISCLAIMER: This publication is based on sources and information be	lieved to be reliable, but AAPM and the					
Students	editors disclaim any warranty or liability based on or relating to the co	ontents of this publication. AAPM does					
Meetings	not endorse any products, manufacturers, vendors, or suppliers. Not	hing in this publication should be					
Education	interpreted as implying such endorsement. AAPM is not responsible for the use or results of any testing done in reliance on this publication.						
Quality & Safety							
Government Affairs	The instructions for planning, measurement, and analysis are includ	led in the following PDF.					
Publications	 Download the excel data report form. 						
 Medical Physics Journal 	 The CT and structure package in DICOM format is in this zip file. 						
 Journal of Applied Clinical Medical Physics 	 IMRT commissioning: Multiple Institution planning and dosimetry co 119 	imparisons, a report from AAPM Task Group					

2. CT画像を取り込みましょう!

(1) [Open Patient] → [Import New Data] → [Browse] デスクトップより、
 TG119_CT_Structuresを選択

- DICOM Patient "000-007" を選択
- CT1 & RTSS_1のペアを選択
- Local Installation : Installation
- Local Clinic : 0~Clinic
- Patient IDを任意の数字に変更 (0~Clinicに存在しないIDにすること)
- Patient NameをEclipse IMRT Radから TG119Physicsへ変更
- Addをクリック

DICOM Patient: 000-007 *								
⊡. 000-007 ⋮. Study 4005 ⋮. CT1 ⋮. RTSS_1 ⋮. RTSS_2 ⋮. RTSS_3 ⋮. RTSS_4								
Installation:	Installation	Ŧ						
Clinic:	0~Clinic *							
Patient ID:	1~00000119 *							
Patient Name:	TG119Physics							
Clear	Add Merge							

(2)

- ③ CTtoEDはご施設で使用しているものを選択 (トレーニングでは「DICOM3.Legacy120kV」を使用)
 - Delete After Transfer の団を外す
 - Importをクリック

⊡ ·· 1~100000119 ⊡ ·· Study 4005 ⊡ ·· CT1							
⊡ • RTSS_1	⊡ RTSS_1						
CTtoED Assignment: DICOM3.Legacy120KV	Ŧ						
Delete After Transfer							
Import Close	Show Log						
1~00000119 is a New Patient							

- RTSS_2,3,4 も同様の手順でインポートする (手順2,3を繰り返す)
- ・最後のストラクチャー(RTSS_4)をインポートする際には Delete After Transfer の☑を入れておく

Delete After Transfer							
Import		Close					

(4)

⑤ インポートしたデータの確認

• [Open Patient]より[TG119Physics]を展開する

Patient Selection							×
Local Patient Remote Monaco Patient							
Installation 20200111NeckWat 551Knowlege			Filte	er Patient List by: Search:	All	•	
AGL9088	DCM	Patient Name	Patient ID			Creation Date	
Clinic		TG119Physics	1~00000119			Jul 14, 2020	
ConvTrainingClinic		VirtualPhantom	VirtualPhantom			May 13, 2014	
Conv FrainingClinic(Demo Clinic Elekta Training Clin		30x30x30,Monaco	MonacoPhantom			Dec 18, 2011	

・ 4つのCT画像、ストラクチャーがあることを確認する

Workspace		▼ ₽ ×
Limage Fusion	Planning	Zo Plan Review
Study 4005 C1 C1 C2 C2 C3 C4 C74 C4 C4	SS_CT1 SS_CT2 SS_CT3 SS_CT4	

CT画像と輪郭をどう使うか

- ・ 治療計画パートではこのCT画像を使用し、治療計画を作成する
- 実測検証パートではQAプラン機能を使って、ご施設の固体ファントムに 治療計画を移しこむ

3. 治療計画を作成しましょう!

TG-119 Reportの治療計画パート

ダウンロードしたファントムデータに対して、 IMRT治療計画を作成する

- ・自施設での最適化手法を確認
- 治療計画の評価方法を確認

① AP-PA:基準ファクター (Gy/nC)の算出 ② Bands:MLCモデルが正しいことの初期確認 詳細は「MLC Geometry」にてご説明 ③ Mock Prostate ④ Mock Head/Neck

⑤MultiTarget
⑥C-Shape(easy)
⑦C-Shape(hard)

○ゴ゛ール

- Prostate
- Rectum
- Bladder
- $\begin{array}{l} \mathsf{D}_{95\%} > 7560 \ \mathsf{cGy} \ , \ \ \mathsf{D}_{5\%} < 8300 \ \mathsf{cGy} \\ \mathsf{D}_{30\%} < 7000 \ \mathsf{cGy} \ , \ \ \mathsf{D}_{10\%} < 7500 \ \mathsf{cGy} \\ \mathsf{D}_{30\%} < 7000 \ \mathsf{cGy} \ , \ \ \mathsf{D}_{10\%} < 7500 \ \mathsf{cGy} \end{array}$

- ○ビーム構成
 - ・6MV,7門,0度から50度間隔,Isocenter-PTV中心

○処方線量

•7560 cGy/42 fr (1回線量180 cGy)

① SS_CT3を展開

② [Planningタブ]から[New Plan]を選択

1		∎ fa £ #	\$			
≣∙	Tools	Workspace	Fusion	Contourin	g Plan Options	Planning
New Plan •	Close Pla Delete P Import P	an Plan Plan Template	7. New Beam 7a Delete Bear	m Edit Beam	Create and Edit Ports	Do Daws to Port
\smile	Plan		Beam			Port

- ③ Delivery : Step&Shoot IMRT
- ④ Anatomical Site: All
- ⑤ Template [TG119ProstateNew]を選択
- **(6)** Treatment Orientation : Head First

	New Monaco Plan	
	New Plan Name: NewTmpltPlan Description:	
	3 Delivery Step & Shoot IMRT ▼ Select template to import	
(4)	Anatomical Site All Anatomica	
6		
24 Focus where it matters	 ○ Feet First 5 Feet First 5 Feet First 6 Feet First 6 Feet First 7 Feet First 8 Feet First 8 Feet First 8 Feet First 9 Fe	ekto

- ⑦ Treatment Unit:ご施設のものを使用(今回は「AGL」)
- ⑧ Energy: 6MV
- Isocenter Location : Center of PTV

Beam	Ø Treatment Unit	Map Machine	Modality	Algorithm	🕼 Energy	Ø Isocenter Location		X(cm)	Y(cm)	Z(cm)
71	AGL 🔻		Photon 🔻	Monte Carlo 🔻	6.0 MV 🔻	Center of PTV	•	-0.09	-1.13	0.15
2	AGL 🔻		Photon 🔻	Monte Carlo 🔻	6.0 MV 🔻	Center of PTV	•	-0.09	-1.13	0.15
3	AGL 🔻		Photon 🔻	Monte Carlo 🔻	6.0 MV 🔻	Center of PTV	•	-0.09	-1.13	0.15
4	AGL 🔻		Photon 🔻	Monte Carlo 🔻	6.0 MV 🔻	Center of PTV	•	-0.09	-1.13	0.15
5	AGL 🔻		Photon 🔻	Monte Carlo 🔻	6.0 MV 🔍	Center of PTV	•	-0.09	-1.13	0.15
Port O	options									
🔘 In	nport Beams Only				0	(9)				
OR	etain Template Bear	m Shapes								
	uto-conform Ports									
	Conform to:	Ψ.	Margin(cm):	0.00	MLC					
1										

OK

Cancel

⑩ Prescription: テンプレートで設定済み

Presc	ription										
Pres	scription Segments										
	Add Rx Delet	te Rx						(10)			
		Rx ID	Rx Site		Pres	cribe To			Rx Dose (cGy)	Number of Fractions	Fractional Dose (cGy)
	Physician's Intent	A v	•	Plan Isocenter	▼ x	-0.09 Y	-1.13 Z	0.15	7560.0	42	180.0

Structures Prescription Beam	IMRT Constraints Dose Reference Points
------------------------------	--

Prescribe To: Plan Isocenter Rx Dose(cGy): 7560 cGy Number of Fractions: 42

① IMRT Constraints: テンプレートで設定済み (変更可)

IMRT Constraints													
↑ ↓ Pareto Constrained IMRT	Parameters												
Structure	Cost Function	Delete	Enabled	Status	Manual	Weight	Reference Dose (cGy)	Multicriterial	Power Law Exponent	Shrink Margin (Isoconstraint	lsoeffect	Relative Impact
Prostate	 Target Penalty 		~	On		1.00					7560.0	0.0	
	Quadratic Overdose		✓	On		0.23	7700.0				100.0	0.0	
Rectum	 Parallel 		✓	On		0.14	2000.0		3.00	0.40	50.00	0.00	
	Serial		✓	On		0.67			10.00	0.40	4000.0	0.0	
Urinary bladder			✓	On		0.01	2000.0		3.00	0.40	50.00	0.00	
	Serial		✓	On		0.05			10.00	0.40	4000.0	0.0	
BODY	 Quadratic Overdose 		✓	On		0.01	7560.0			0.00	10.0	0.0	
			MRT Co	nstraints Pareto	s Cons	strained	IMRT Param	eters					
			Stru	ucture				Cost	Function				
			Pro	ostate				+ Targe	t Penalty				
								Quad	ratic Overdose				
			Re	ctum					el				
								Serial					
			Uri	nary blad	lder			 Parall 	el			-	
27 Focus where it matters								Serial				\bigcirc	Elekto
		1	BO	DY				 Quad 	ratic Overdose				

① IMRT Constraints: テンプレートで設定済み (変更可)

IMRT Constra	aints															
↑ ↓ Pa	areto Constra	ained IMR	T Paramete	rs												
Structur	re			Cost Function	Delete	Enabled	Status	Manual	Weight	Reference Dose	cGy) Multicriterial	Power Law Exponen	t Shrink Margin (Isoconstraint	Isoeffect Re	lative Impact
Prostat	e		*	Target Penalty		~	On		1.00					7560.0	0.0	
				Quadratic Overdose	1	~	On		0.23	77	0.0			100.0	0.0	
Rectum	1		*	Parallel		~	On		0.14	200	0.0	3.00	0.4	ю 50.00	0.00	
				Serial		~	On		0.67			10.00	0 0.4	HO 4000.0	0.0	
Urinary	bladder		*	Parallel		✓	On On		0.01	200	0.0	3.00	0.4	HO 50.00	0.00	
BODY			*	Quadratic Overdose		~	On		0.01	75	0.0	10.00	0.0	0 10.0	0.0	
ſ	Delete	Enabled	Statu	is Manu	al M	/eight	Refere	nce Dose	(cGv) N	Aulticriterial	Power Law F	nonent Shrin	k Margin (Isoconstraint	Isoeff	act
	Delete	Enabrea	Juite	is mana		reight	Refere	nee bose	(00)	annenternar	rower caw c	ponene sinni	k margin (m		isociii	
		~	On			1.00								7560.0	(0.0
		~	On			0.23		77	700.0					100.0	0	0.0
		~	On			0.14		20	0.00			3.00	0.40	50.00	0.	00
		~	On			0.67						10.00	0.40	4000.0	0	
		~														0.0
			On			0.01		20	00.0			3.00	0.40	50.00	0.	0.0
		~	On On			0.01 0.05		20	00.0			3.00 10.00	0.40 0.40	50.00 4000.0	0. (0.0 00 0.0
8 Focı		>	On On On			0.01 0.05 0.01		20	000.0 560.0			3.00 10.00	0.40 0.40 0.00	50.00 4000.0 10.0	0. (

① IMRT Constraints: テンプレートで設定済み(変更可)

• Prostate

Target Penalty DESKTOP-B5DLV3F - [1~00000119, TG119Physics, CT3,				
Required Parameters				
	Prescription (cGy):	7560.0		
	Minimum Volume (%):	95.00		
Optional Physical Parameters				
	Surface Margin:			
	Close			

Quadratic Overdose@DESKTOP-B5DLV3F - [1~00000119, TG119Physics,				
Required Parameters				
Maximum Dose (cGy): 770	0.0			
RMS Dose Excess (cGy): 10	0.0			
Close				

IMRT Constraints: テンプレートで設定済み(変更可)

Rectum & Urinary bladder

nequireu Farameters			
	Reference Do	ose (cGy):	2000.0
	Mean Organ Da	mage (%):	50.00
	Power Law	Exponent:	3.00
Optional Physical Parameters -	М	ulticriterial:	
Shrink Structures			
Structure Name	Includ	e Çộ M	Margin (cm)
Prostate	✓		0.40

rial DESKTOP-B5DLV3F - [1	~00000119, TG	119Physic	s, CT3, NewTmpl	×
nequileu l'arameters	Equivalent Un	iform Dose	(cGv): 4000.0	
			1 40.00	
	Pow	er Law Exp	onent: 10.00	
Optional Physical Parameters				
		Multi	criterial:	
Shrink Structures				
Structure Name		Include	C) Margin (cm)	
			0.40	

① IMRT Constraints: テンプレートで設定済み(変更可)

• BODY

uadratic Overdose DESKTOP-I	85DLV3F - [1	~0000011	9, TG119P	hysics,	
Required Parameters					
	Max	imum Dose	(cGy):	7560.0	
	RMS Do	ose Excess	(cGy):	10.0	
Optional Physical Parameters					
		Multio	criterial:		
Shrink Structures					
Structure Name		Include	¢þ Ma	rgin (cm)	
Prostate		~		0.00	1
Higher-Priority OARs		✓		0.00	
Γ	~				
	Close				

CElekta

31 | Focus where it matters

¹² Calculate Properties:下図の通り設定

alculation Properties		×
Grid Settings		
Grid Spacing (cm):	0.20	
Calculate Dose Deposition to:	Medium 🔹	
Store and display dose in couch s Grid Settings changes will be appl	structures: lied to ALL Rx IDs.	
Store and display dose in couch s Grid Settings changes will be appl Algorithm Settings Algorithm:	structures: lied to ALL Rx IDs. Monte Carlo Photon	
Store and display dose in couch s Grid Settings changes will be appl Algorithm Settings Algorithm: Statistical Uncertainty (%):	structures: lied to ALL Rx IDs. Monte Carlo Photon 0.50	

Grid Spacing(cm) 計算グリッドの大きさを入力。0.2~0.3 cmを推奨。

Calculate Dose Deposition to(Medium or Water)

物質線量として算出するか、水吸収線量として算出するかの 選択を行う。詳細は「Dose to Water/Medium」にてご説明。

Algorithm

IMRTの場合はモンテカルロのみ使用可能

Statistical Uncertainty(%)

不確かさが何%程度になるまで計算を行うかの設定 Per Calculationでは1.5%以上にしない。 臨床では1.0%推奨だが、QAではより細かい0.5%とする。

32 | Focus where it matters

¹³ Sequencing Parameters: <u>Step & Shoot IMRT</u>下図の通り設定

Sequencing Parameters: Step & Shoot IMRT		×
 Segment Shape Optimization High Precision Leaf Positions (Requires More Memory) 		
Speed	Plan Quality	
Min. Segment Area (cm²):	2.000	
Min. Segment Width (cm):	0.50	
Fluence Smoothing:	Medium *	
Min. MU / Segment:	4.00	
Max. # of Segments Per Plan:	250	
Park Leaf Gap Under Jaw		
OK		

Segment Shape Optimization

最終線量計算前にビームウェイト調整、 セグメント形状のスムージング、シーケンシング、 最適化が実行される。 トレーニングでは5回に設定する。

SSOの特徴				
最適化時間	増加(最大20回繰り返し)			
計画の品質	向上			
照射時間	減少			
セグメント数	減少			
MU	増加する可能性あり			

¹³ Sequencing Parameters: <u>Step & Shoot IMRT</u>下図の通り設定

Sequencing Parameters: Step & Shoot IMRT		×		
Segment Shape Optimization				
✓ High Precision Leaf Positions (Requires More Memory)				
Speed	Plan Quality			
Min. Segment Area (cm²):	2.000			
Min. Segment Width (cm):	0.50			
Fluence Smoothing:	Medium *			
Min. MU / Segment:	4.00			
Max. # of Segments Per Plan: 2				
Park Leaf Gap Under Jaw				
OK Cancel				

34 | Focus where it matters

Min segment Area

計画で許容される最小セグメント照射野

Min segment Width(cm)

許容可能な最少セグメント幅 0.5を推奨

Fluence Smoothing

最適化の第一段階において、フルエンスのスムージング処理を制御 Off/ Lowを選択→過剰な数のセグメントが作成される可能性あり Highを選択→計画の質が低下する可能性あり

Min MU/segment

セグメントに対して許容される最小MU値

Max # of Segment Per Plan

プランに対して許容される最大セグメント数 150から250を推奨。

④ ヴァーチャルカウチを挿入

Plan Optionsタブ → Import Positioning Deviceをクリック Import Treatment CouchよりsampleElektaを選択

④ ヴァーチャルカウチを挿入

Treatment Couch Positionにてカウチの位置を合わせる Structuresにカウチ情報が追加された

Treatment Couch Position@DESKT					
Shift (cm):					
S(x):	0.00				
T(y):	0.00				
C(z):	0.00				
	Done				

	Name	Color	Visible	Volume (cm³)	Туре	Force ED	Fill ED	Relative ED
	BODY		~	13523.599	External 👻	1		Water
36 Focus where	Carbon Fiber	-	~	7396.746	Couch 👻	~		0.500
	Foam Core		✓	6099.409	Couch 👻	>		0.030
(4) ヴァーチャルカウチを挿入

カウチモデリングが終了していればRelative EDに数値が入力されている 予めカウチモデリングを行っている必要がある (Treatment Couch Libraryへ値が登録されている)

Structures									
View: Contoured All Layers	Adapt Setup								
Name	🔺 Color Vi	isible Volume (cm³)	Туре	Force ED	Fill ED	Relative ED	Show 2D Outlin	2D Transparency	3D/BEV Transparency
BODY	 • 	✓ 13523.599	External 👻			Water	~	D	
Carbon Fiber		✓ 7396.746	Couch -	~		0.500	~		
Foam Core		✓ 6099.409	Couch +	~		0.030	~		
Prostate		✓ 36.529	Internal 👻	V		Water	~	D-	
PTV		✓ 81.434	Internal 👻	V		Water	~	D-	
Rectum		✓ 17.619	Internal 👻	V		Water	~	D-	
Urinary bladder		✓ 49.356	Internal 👻			Water	v]-	
				Relative	e ED				
				Wa	ater				
us where it matters				0.	500				()FI
				0.	030				

④ ヴァーチャルカウチを挿入

画面下部のBeamsタブ → Treatment Aids をクリックCouchに図を入れる

Beams					▼ 무 ×
1 . 1 .	To I. I.	Delete Parent Beam	15	\sim	General Geometry Treatment Aids Setup Beams
Beam	Description	Bolus	SBD	(cm) Couch	
1			•		
2			*		
3			*	✓	
4			*	\checkmark	
5			*	~	
6			*	✓	
7			*		
		<click a="" add="" new<="" td="" to=""><td>beam></td><td>\smile</td><td></td></click>	beam>	\smile	
Structur	es Prescriptio	on Beams IMRT (Constrair	ts Dose Reference Poi	nts

※ ビーム作成の前にカウチを挿入していれば、この作業は不要です

()Elekta

⑮ 線量計算

Batch Optimizationをクリック

※ Batch Optimizationは第1、第2段階を続けて計算します
 ※ 計算終了までお時間がかかります

16 リスケール

画面下部のPrescriptionタブ → Rescale[7560 cGy],[to cover], [95 %],[Prostate]をそれぞれ入力する

Presc	ription			
Pre	scription Segments			
	Add Rx Dele	te Rx		
		Rx ID Rx Site		Prescribe To
	Physician's Intent	A • P	Plan Isocenter 🔹 🔻	X -0.09 Y -1.13 Z
				Actual Dose = 7662.2 cGy
<	Rescale	7560.0 cGy to cover	▼ 95.	00 % of Prostate
	Weight beams by: Dose 	⊖ MU		Equal Weights
ocus where Struc	ctures Prescription Beams	IMRT Constraints Dose Referen	ice Points	

1) 評価

DVH StatisticsのDosimetric Criteriaよりゴール達成の有無を評価する ※評価に必要な項目はTemplateより登録済み

	DVH Statistics			
	Dosimetric Criteria	Statistics Display		
	Structure	Dosimetric Criterion	Actual Value	
	Prostate	D5% < 8300 cGy	7808.1 cGy 📀	
		D95% > 7560 cGy	7560.0 cGy 📀	
	E Rectum	D10% < 7500 cGy	5165.4 cGy 🛛 📀	緑のチェックマークが表示
		D30% < 7000 cGy	3293.0 cGy 🛛 📀	されていれば達成している
	Urinary bladder	D10% < 7500 cGy	3978.3 cGy 🛛 📀	
41 Focus		D30% < 7000 cGy	2457.9 cGy 🛛 📀	Elekta

残りの計画も行ってみましょう

Mock Head/Neck

• MultiTarget

C-Shape(easy&hard)

実習2. 治療計画の作成 – 2. Mock Head/Neck

CT画像:SS_CT2 Plan Template :TG119NeckNew

43 | Focus where it matters

実習2. 治療計画の作成 – 2. Mock Head/Neck

○ゴール

- PTV $D_{90\%} = 5000 \text{ cGy}, D_{99\%} > 4650 \text{ cGy}, D_{20\%} < 5500 \text{ cGy}$
- Cord Maximum < 4000 cGy
- Parotid $D_{50\%}$ < 2000 cGy

○ビーム構成

・6 MV, 9門, 0度から40度間隔, Isocenter-PTV中心

○処方線量

• 5000 cGy/25 fr (1回線量200 cGy)

実習2. 治療計画の作成-3. MultiTarget

CT画像:SS_CT4 Plan Template:TG119MultiTargetNew

45 | Focus where it matters

実習2. 治療計画の作成-3. MultiTarget

${\rm ext}({\rm ext}) = {\rm ext}({\rm ext})$

- Central target
- Superior target
- Inferior target
- $D_{99\%} > 5000 cGy, D_{10\%} < 5300 cGy$ $D_{99\%} > 2500 cGy, D_{10\%} < 3500 cGy$ $D_{99\%} > 1250 cGy, D_{10\%} < 2500 cGy$

○ビーム構成

・6 MV, 7門, 0度から50度間隔, Isocenter-Center Target中心

○処方線量

• 5000 cGy/25 fr (1回線量200 cGy)

実習2. 治療計画の作成-4. C-Shape (easy & hard)

CT画像:SS_CT1 Plan Template :TG119CshapeEasyNew、TG119CshapeHardNew

47 | Focus where it matters

実習2. 治療計画の作成 – 4. C-Shape (easy & hard)

()ゴール • PTV $D_{95\%} = 5000 \text{ cGy}, D_{10\%} < 5500 \text{ cGy}$ Core(easy) $D_{10\%} < 2500 \text{ cGy}$ Core(hard) $D_{10\%} < 1000 \text{ cGy}$

○ビーム構成

•6 MV, 9門, 0度から40度間隔, Isocenter(-0.15, 0, 0.15)

○処方線量

• 5000 cGy/25 fr (1回線量200 cGy)

実習2. 治療計画の作成 – 4. C-Shape (easy & hard)

C-Shape(hard)<u>Core の達成は困難</u> レポート本文でも以下の記載あり

Two versions of the problem are given. In the easier, the central core is to be kept to 50% of the target dose. In the harder, the central core is to be kept to 20% of the target dose. This latter goal is probably not achievable and tests a system that is being pushed very hard.

おそらく達成可能ではない。 どこまで抑えられるかをテストするため。

Planning parameter	Plan goal (cGy)	Mean (cGy)	Standard deviation (cGy)	Coefficient of variation
Central target D99	>5000	4955	162	0.033
Central target D10	<5300	5455	173	0.032
Superior target D99	>2500	2516	85	0.034
Superior target D10	<3500	3412	304	0.089
Inferior target D99	>1250	1407	185	0.132
Inferior target D10	<2500	2418	272	0.112

Planning parameter	Plan goal (cGy)	Mean (cGy)	Standard deviation (cGy)	Coefficient of variation
Prostate D95	>7560	7566	21	0.003
Prostate D5	<8300	8143	156	0.019
Rectum D30	<7000	6536	297	0.045
Rectum D10	<7500	7303	150	0.020
Bladder D30	<7000	4394	878	0.200
Bladder D10	<7500	6269	815	0.130

Planning parameter	Plan goal (cGy)	Mean (cGy)	Standard deviation (cGy)	Coefficient of variation
PTV D90	5000	5028	58	0.013
PTV D99	>4650	4704	52	0.011
PTV D20	<5500	5299	93	0.018
Cord maximum	<4000	3741	250	0.067
Parotid D50	<2000	1798	184	0.102

Planning parameter	Plan goal (cGy)	Mean (cGy)	Standard deviation (cGy)	Coefficient of variation
PTV D95	5000	5010	17	0.003
PTV D10	<5500	5440	52	0.010
Core D10	<2500	2200	314	0.141

Planning Parameter	Plan goal (cGy)	Mean (cGy)	Standard deviation (cGy)	Coefficient of variation
PTV D95	5000	5011	16.5	0.003
PTV D10	<5500	5702	220	0.039
Core D10	<1000	1630	307	0.188

※レポートでもC-Shape(hard)のPTV D10とCore D10が達成できていない

※エレクタでも行いました ~治療計画~

	Prostate			Neck		M	ultiTarget		C	shape(Eas	sy)	C	shape(Har	d)
Parameter	Goal	Achieved	Parameter	Goal	Achieved	Parameter	Goal	Achieved	Parameter	Goal	Achieved	Parameter	Goal	Achieved
Prostate D95	>7560	7560	PTV D90	5000	5000	CentralTarget D99	5000	5000	PTV D95	5000	5000	PTV D95	5000	5000
Prostate D5	<8300	7815	PTV D99	>4650	4706	CentralTarget D10	<5300	5140	PTV D10	<5500	5373	PTV D10	<5500	5455
Rectum D30	<7000	3579	PTV D20	<5500	5153	Sup Target D99	>2500	2602	Core D10	<2500	1954	Core D10	<1000	1486
RectumD10	<7500	5509	Cord Max	<4000	3514	Sup Target D10	<3500	3369						
Bladder D30	<7000	2426	Parotid D50	<2000	1877	Inf Target D99	>1250	1299						
Bladder D10	<7500	3968	R Parotid D50	<2000	1806	Inf Target D10	<2500	2267						
			L Parotid D50	<2000	1893									
# beams		7	# beams		9	# beams		7	# beams		9	# beams		9
cGy/fraction		7560/42	cGy/fraction		5000/25	cGy/fraction		5000/25	cGy/fraction		5000/25	cGy/fraction		5000/25
Total MU		414.24	Total MU		898.19	Total MU		351.67	Total MU		973.12	Total MU		1052.12

※やはりC-Shape(Hard)のCore D10のみ達成できず

4. 患者QA用ファントムを登録しましょう!

実習3. ファントムの登録

検証で使用する自施設のファントムを登録する(実習1の内容とほぼ同様)

- ① CT装置より撮影データをMonacoへ送信
- ② [Open Patient] → [Import New Data] よりDICOM Importウィンドウを 表示させる
- ③ DICOM Patientより送信したデータを選択する(今回はIMRT2019を使用)
- ④ Local Clinicを<u>1~QA Clinic</u>とする。ID,Nameは任意。
- ⑤以降は実習1と同様

DICOM Import	
DICOM Patient:	
(3) IMRT2019	

Clinic: 1~QA Clinic	Installation:	Installation	Ŧ
Patient ID: IMRT2019	4 Clinic:	1~QA Clinic	Ŧ
Fotore ID. Inter2019	Patient ID:	IMRT2019	Ŧ
Patient Name: IMRT^iba	Patient Name:	IMRT^iba	

実習3. ファントムの登録

Monacoへの取り込みが終了した後、登録されたファントムの確認と、 必要に応じてストラクチャーを追加する

- ⑥ [Open Patient] → [QA Clinic]より追加したファントムを選択する
 (トレーニングではIMRT2019を選択し練習する)
- ⑦ 体輪郭、検出器輪郭、カウチ、関心ポイントなどを必要に応じて 追加する

🕐 Elekta

⑧検出器の輪郭を描いた後は、実際の検出器の体積と大きな誤差がないか確認する

Structu	res						
View:	Contoured	All Layers	Adapt	Setup			
Name				Color	Visible	Volume (cm³)	Туре
CC04					~	0.041	Internal 👻
CC13					~	0.133	Internal 👻

※ TG119ではファーマよりも小さな検出器、具体的には 0.125 cc相当の検出器を使用するよう記載してある

→ 確認後、Saveすれば登録される

※ 参考資料 ファントム検証

患者QAなどで絶対線量検証を行う場合は、ファントム密度検証を予め行って おく必要がある。検証後、体輪郭のRelative EDに反映する (※入力されている数値はサンプルです) StructuresよりForce EDをチェックし、Relative EDに入力する

Structures									
View: Contoured All Layers 🛕 Adapt	Setup								
Name 🔺	Color	Visible	Volume (cm³)	Туре		Force ED	Fill ED	Relative ED	Show 2D Outlin
Carbon Fiber		~	3900.156	Couch	*	✓		0.500	
Foam Core		✓	3216.004	Couch	*	✓		0.030	•
patient		~	10117.471	External	•			1.010	

※使用するファントムが水等価であると判断した場合は、1.000と入力する

5. QAプランを作成しましょう!

(1) 予備テスト

①AP-PA:基準ファクターの算出に使用:評価点線量検証と線量分布検証を行う

②Bands:MLCパラメータの初期確認

- :フィルム応答を確認する
- :評価点線量検証と線量分布検証を行う

(2) コミッショニングテスト

それぞれのプランで以下の検証を行う(測定箇所は後述) ①評価点線量検証 ②線量分布検証 < 全門> ③線量分布検証 < 各門>

QAプランを作成する前に、どの検証で何の機器(検出器やファントムなど)を 使用するか明確に決めておく必要がある

- ・エレクタはAPのみで作成(照射野サイズ10 x 10)
- ・ご施設で実測するファントムを使用する
- ・評価点の吸収線量を記録し、線量分布評価用のDose Planeを取得する(後述)

< 評価点線量検証 >

<線量分布検証>

予備テストの作成

\bigcirc AP-PA

・評価点の吸収線量を記録

< 評価点線量検証 >

DVH Statisticsタブ → Statisticsをクリック Statisticsウィンドウより検出器輪郭の<u>Mean Dose</u>を読む

DVH Statistics					
Dosimetric Criteria Sta	tistics Display				
Structure	Volume (cm³)	Min. Dose (cGy)	Max. Dose (cGy)	Mean Dose (cGy)	
CC04	0.040	81.0	82.4	81.7	→ 81.7cGv
🔳 Carbon Fiber	3886.752	0.0	0.0	0.0	(※ 参考値)
Foam Core	3226.396	0.0	0.0	0.0	
patient(Unsp.Tiss.)	10124.610	0.1	119.7	16.6	

予備テストの作成

\bigcirc AP-PA

・線量分布評価用のDose Planeを取得

左下の座標入力欄へ取得したい断面の座標を入力する (Isocenter面のCoronal画像となる)

Slice Mode S (x): 0.00 🗘 T (y): 0.00 🗘 C (z): 5.00 🗘 cm

OutputタブのDose Planeをクリック

<線量分布検証>

Coronal、Individual Beamを選択し、OKをクリックする

<線量分布検証>

データはデスクトップ上のFocalData→DosePlanesに格納されている このファイルは多次元検出器やフィルム解析ソフトで読み込むことができる

Dose Planeの詳細情報は弊社HPに資料がございますので、 ダウンロードして頂き、ご確認ください。

「Monaco Dose Plane Outputの使い方」

https://forms.elekta.co.jp/software/download/res_monaco.html

予備テストの作成

\bigcirc Bands

- ・作成方法は次項より記載
- ・その他の説明や評価方法は前項のAP-PAと同様

< 評価点線量検証 >

<線量分布検証>

- ・MLCモデルが正しいことの初期確認用の照射野である
- ・5セグメントであり、非対称3×15から3 cmずつ開いていく
- ・1セグメントあたり25 MU
- ・TG119ではAP-PAで作成しているがエレクタではAPのみで作成
- ・エレクタではMLCパラメータを調整してモデルを納品しているため、基本的には 不要と考えるが、確認のため行ってもよい

 $_{\rm 66\,|\,Focus\,where\,it}~<{\rm BEV}>$

< Axial面 >

≣・	Tools	Workspace	Fusion	Contourin	g Plan Options	Planning
New Plan *	Close Pla Delete Pl Import P	an Ian Ian Template	T. New Beam	m Edit Beam	Create and Edit Ports	lo 🤇 p Jaws to Port 🖞
	Plan		Beam			Port

検証したいファントムを開き Planningタブ→New Planをクリックする

New Monaco Plan		×
New Plan Name: NewTmpltPlan Delivery 3D	Description: Select template to import	
Anatomical Site All Scan Orientation (IMRTPhantom): Head First Supine Treatment Orientation	 Template: AGLCATCCC (Rx Site: , Rx Dose: 200.0 cGy, Total Beams: 6) Template: AGLCATpMC (Rx Site: , Rx Dose: 200.0 cGy, Total Beams: 4) Template: AGLMSQCCC (Rx Site: , Rx Dose: 200.0 cGy, Total Beams: 3) Template: AGLMSQDMC (Rx Site: , Rx Dose: 200.0 cGy, Total Beams: 2) Template: AbsDoseCCC (Rx Site: , Rx Dose: 200.0 cGy, Total Beams: 6) Template: AbsDosepMC (Rx Site: , Rx Dose: 200.0 cGy, Total Beams: 5) Template: AbsPB (Rx Site: , Rx Dose: 200.0 cGy, Total Beams: 5) Template: AbsPB (Rx Site: , Rx Dose: 200.0 cGy, Total Beams: 5) 	
 Head First Feet First 	 Template: DEFAULT3D1beam (Rx Site: , Rx Dose: 200.0 cGy, Total Beams: 1) 3D (Number of Beams: 1) Template: DEFAULT3D4beam (Rx Site: . Rx Dose: 200.0 cGv. Total Beams: 4) 	•
MOSAIQ Options Course ID: 1	Plan Intent: Curative	

Deliveryは3DとしTemplateはDEFAULT3D1beam を選択する。エネルギーは6 MVとする。

画面左下Prescriptionタブを選択する

Structures Prescription Bea	ams Dose Reference Points
-----------------------------	---------------------------

cription						▼ 부 >
escription Segments						
Add Rx Dele	ete Rx					
	Rx ID Rx Site		Prescribe To		Rx Dose (cGy)	Number of Fractions
Physician's Intent	A 🔻 👻	Plan Isocenter 🔹	X -0.06 Y 5.00 Z	0.07	200.0	1
			Actual Dose = 0.0 cGy			
Rescale	200.0 cGy to	~				
Weight beams by: ODose	(MU		Equal Weights			
Beam	Description	Field ID	%	Lock	MU / Fx	
1 AP		1	II	100.00	125.00	
				Total MU / Fx	125.00	

Weight beams by をMUに設定し、 右下のTotal MU/Fxに125を入力する

Prescript Prescri	tion iption	Segm	nents												
Bean	n 1	•	Add Segment	Copy Seg	ment	Delete Segment	Edit Segment								
Segm	ent		%		Lock	MU / Fx	Segment Area (cm ²)	Width1 (cn	n)	Width2 (c	m)	Length1 ((cm)	Length2	(cm)
	1			100.00		125.00	100.000	LW	5.00	RW	5.00	ÜL	5.00	τĹ	5.00

- ・5つのセグメントを作成するが、1セグメント毎に 照射野を作成する
- ・Segmentsタブ→Edit Segmentをクリックする Create/Edit Portsウィンドウが現れる
- ・Port by Shapesを「Keyboard Entry」にする

Current Port:	0 -
Port	
⊖ Block ⊖ Aper	ture
Leaf Insertion (%):	50.00
Closed Leaf Position (cm):	0.000
	Port Properties
Auto Conform	
Structure:	NONE -
Margin (cm):	0.00
Apply to Visible	e Beams
Snap Jaws to Port	
	tor
Rotate Port with Collima	
Port by Shapes:	NONE
Port by Shapes:	NONE
Port by Shapes:	NONE NONE Circle Square

Enter Port Using the Keyboardのウィンドウが表示される

Enter Port Using the	e Keyboard		×
Port Number: 0			
Type: MLC			
Coordinates are def Center X(cm):	ined at isocenter:	Y(cm):	
Width(cm):		Length(cm):	
Use Rectangular	Setup		
X(cm)	Y(cm)		
<dick add<br="" to="">Click to</dick>	a new row>	w rowをクリック	
ClearAll		Invalid data. Please check your input Create Close	

70 | Focus where it matters

r		
	X(cm)	Y(cm)
	0.00	0.00
	<click add<="" td="" to=""><td>a new row></td></click>	a new row>

座標を入力する。 Click to add a new rowを クリックして追加していく

Type: MLC		
Coordinates are defined	l at isocenter:	
Center X(cm):	Y(cm):	
Width(cm):	Length(cm):	
Liee Rectangular Set		
Ose Nectangular Set	-h	
X(cm)	Y(cm)	
-7.50	7.50	
-4.50	7.50	
-4.50	-7.50	
-7.50	-7.50	
<click a="" add="" r<="" td="" to=""><td>ew row></td><td></td></click>	ew row>	

入力したらCreateをクリック 具体的な座標は次項に記載

Enter Port Using the Keyboardの考え方

1セグメント目が完成

Prescription					
Prescription	Segments				
Beam 1	▼ A	dd Segment	Copy Segment	Delete Segment	Edit Segment
	Eq	ual Weights			

1セグメント目作成終了後、 Copy Segmentで追加していく

🕑 Elekta

2セグメント

3セグメント

4セグメント

5セグメント

X(cm)	Y(cm)
-7.50	7.50
-1.50	7.50
-1.50	-7.50
-7.50	-7.50

Bands照射野の作成方法

5つのセグメントが完成した Equal Weightsをクリックし25 MUずつに設定する

Prescription Segments
Beam 1 ▼ Add Segment Copy Segment Delete Segment Edit Segment
Equal Weights
Segment % Lock MU / Fx Segment Area (cm ²) Width1 (cm) Width2 (cm) Length1 (cm) Length2 (cm)
1 20.00 25.00 45.000 LW 20.00 RW 20.00 UL 7.50 LL 7.50
2 20.00 _ 25.00 90.000 LW 20.00 RW 20.00 UL 7.50 LL 7.50
3 20.00 _ 25.00 135.000 LW 20.00 RW 20.00 UL 7.50 LL 7.50
4 20.00 _ 25.00 180.000 LW 20.00 RW 20.00 UL 7.50 LL 7.50
5 20.00 25.00 25.000 LW 20.00 RW 20.00 UL 7.50 LL 7.50

計算条件は右図のように設定してください

0.50

Statistical Uncertainty (%):

Per Control Point OPer Calculation

コミッショニングテストの作成

実習4. QAプランの作成-1. Mock Prostate (評価点線量検証)

① プラン名の上で右クリック \rightarrow New QA Plan を選択 もしくは

② Planningタブ → New Planの下矢印 → New QA Plan を選択

2

③ New QA Planウィンドウの上部(赤印)をクリックし、
 QA計画に使用するご施設のファントムを選択する
 (トレーニングではIMRT2019を選択)

	New QA Plan								
	QA Clinic: IMRT2019: CT1								
	Studyset Orientation(CT1): Head First Supine Treatment Plan Orientation(Prostate): Head First Supine								
	Select Studyset Orientation for QA Plan:								
	Reset Beams to Nominal Angles Gantry Collimator Couch Reset All								
	Calc Vol Grid Spacing (cm): 0,20								
	Calculate dose to: Medium *								
	Algorithm: Monte Carlo +								
	Statistical Uncertainty (%) 0.50 O Per Control Point Include Beams from Rx ID:								
D									

I	New QA Plan	
	Clinic: 100000119: CT3	
1	QA Clinic: ArcCHECKCMS: CMSArcCHECK	
	QA Clinic: ArcCHECKCMSCouch: CMSArcCHECKCouch	
K	QA Clinic: Delta4: delta3mm	
\mathbf{N}	QA Clinic: IMRT2019: CT1	
	QA Clinic: Monaco50x50x50: CT1	
	QA Clinic: MonacoPhantom: MonacoPhantom	

→ QA Clinicに格納されているファントムが選択できる

④ その他の項目は左図のように設定

New QA Plan QA Clinic: IMRT2019: CT1 Studyset Orientation(CT1): Head First Supine Treatment Plan Orientation(Prostate): Head First Supine Select Studyset Orientation for QA Plan: Image: Plan Orientation For QA Plan	ファントムのorientationと、プランのorientationを 表示して、QAプランのorientationをどうするか、 を訪ねている。 通常、患者がどちらの配置であろうと、ファントム は常に同じ配置であるはず。	
Reset Beams to Nominal Angles Gantry Collimator Calc Vol Grid Spacing (cm): 0.20	ガントリーやカウチを0度で実測検証したいときは チェックを入れる	
Calculate dose to: Medium * Algorithm: Monte Carlo * Statistical Uncertainty (%) 0.50 O Per Control Point O Per Calculation	計算設定 トレーニングでは Grid Spacing 0.20cm Statistical Uncertainty 0.50% (Per Calculation) Calculate dose to Medium にて行う	
Include Beams from Rx ID:	複数アイソセンターの場合、どのアイソセンターに 属するビームを取り込むか	() Flekto

⑤ ファントムのどの点をIsocenterにするか決定する (後から移動することも可能) トレーニングではCenter of CC04 とする

Set Up QA Plan									
Isocenter:	Center of CC04				Ŧ				
	X -0.06	Y	5.00	Z	0.07				
	✓ Use Common Isocenter								
			OK	Ca	ncel				

⑥ 自施設のファントムに計画を移すことができた
 ⑦ PlanningタブのCalculateをクリックすると計算が始まる

🕑 Elekta

78 | Focus where it matter

⑧ DVH Statisticsタブ → Statisticsをクリック Statisticsウィンドウより検出器輪郭のMean Doseを読む

※ 上記の例では、Isocenterの線量評価である。(前立腺線量を想定)
 このプラン(Mock Prostate)ではその他に2.5 cm背側のポイントも評価する。
 これは直腸線量を想定している。
 → 方法は次項に記載

Elekta

※ 2.5 cm背側ポイントの評価方法
 先ほど設定したIsocenter座標から、Z軸を2.5 cm足した座標に変更し計算
 これにより、2.5 cm背側に検出器輪郭が移動する。この線量を読む。
 く実測時はカウチを2.5 cm下げることに注意 >

X (cm) -0.06	Y (cm) 5.00	Z (cm) 0.07	X (cm) -0.06	Y (cm) 5.00	Z (cm) 2.57
					1

Delekta

実習5. QAプランの作成 – 1. Mock Prostate (線量分布検証 各門)

使用するファントムを選択するまでは、「評価点線量検証」と同様

New QA Plan	
Clinic: 100000119: IMRTPhantom	
Studyset Orientation(IMRTPhantom): Head First Supine Treatment Plan Orientation(Prostate): Head First Supine	
Select Studyset Orientation for QA Plan: Head First Feet First Reset Beams to Nominal Angles Gantry Collimator Couch Reset All	ガントリー、コリメータ、カウチを全て0°で 検証するため、チェックを入れる
Calc Vol Grid Spacing (cm): 0.20 Calculate dose to: Medium * Algorithm: Monte Carlo * Statistical Uncertainty (%) * 2.00 Per Control Point Include Beams from Rx ID: ✓	計算設定 トレーニングでは Grid Spacing 0.20 cm Statistical Uncertainty 2.00 % (Per Control Point) Calculate dose to Medium にて実施する
Include Beams from Rx ID:	にて実施す

実習5. QAプランの作成 – 1. Mock Prostate (線量分布検証 各門)

ファントムのどの点をIsocenterにするか決定する (後から移動することも可能) TG119では特に指定はないが、トレーニングでは10 cm深とする

Set Up QA P	'lan				
Isocenter:	Interest Po	oint 3: 10cm			-
	X 0	.00 Y	0.00	Ζ	5.00
	Use Com	mon Isocente	er		
			ОК	Ca	ancel

Calculateをクリックすると計算が始まる

実習5. QAプランの作成 – 1. Mock Prostate (線量分布検証 各門)

・線量分布評価用のDose Planeを取得

左下の座標入力欄へ取得したい断面の座標を入力する Isocenter面のCoronal画像となる(今回は10 cm深)

Slice Mode S (x): 0.00 🗘 T (y): 0.00 🗘 C (z): 5.00 🗘 cm

OutputタブのDose Planeをクリック

Coronal、Individual Beamを選択し、OKをクリックする

Dose Plane Out	put			×			
Transverse	0.00	cm	1~00000119.10x10monaco.Transverse.0.00.ALL				
Sagittal	0.00	cm	1~00000119.10x10monaco.Sagittal.0.00.ALL				
Coronal	onal 5.00 cm 1~00000119.10x10monaco.Coronal.50.00.ALL						
• All Beams		vidual Be	ams 🔿 As Viewed				
			OK Creat				
			OK Cancel				

データはデスクトップ上のFocalData→DosePlanesに格納されている このファイルは多次元検出器やフィルム解析ソフトで読み込むことができる

実習6. QAプランの作成 – 1. Mock Prostate (線量分布検証 全門)

基本的な作成方法は前項までの「評価点線量検証」と同様 Dose Planeで評価するが、Isocenter面とその2.5 cm背側面を取得する

※ この検証では前項の評価点線量検証のように、Isocenterを変更する必要はない ただし、予めフィルムを挟む位置を考慮してCTを撮影しなければならない

85 | Focus where it matters

6. 実測検証しましょう!

TG-119 Reportの線量検証パート

一般論では

- •線量計算が十分な精度を持っていること
- ・測定器系(ファントム含む)が正しく扱われていること
- 動的(IMRT/VMATの) 照射においてリニアックが 十分下しく動作していること

「刀正しく動作しているこ

○ **TG-119**では

• 他施設との比べて大きな誤差が無いか確認できる

TG-119 Reportの線量検証パート

・電離箱線量計とフィルムの使用が推奨されているが、
 これはTG-119発表時(2009年)の時代的な物であり、
 現在では多次元検出器の利用も検討すべきである

•問題は、フィルムにせよ、多次元検出器にせよ、 それ自体のコミッショニングが必要、ということ

※エレクタでもやってみました ~線量検証~

以下の項目を実施

(1)予備テストの検証
 AP(10x10):評価点線量検証、線量分布検証
 Bands:線量分布検証
 (2) コミッショニングテスト(それぞれの症例で実施)
 評価点線量検証
 線量分布検証 < 各門>

エレクタではフィルム解析装置を保有していないため、線量分布検証<全門>は 行っていない

89 | Focus where it matters

○ 評価点線量検証

- ・ファントム: I'mRT Phantom(IBA Dosimetry)
- ・電離箱:CC04(IBA Dosimetry)

○線量分布検証 <各門>

- ・検出器: MapCHECK2(Sun Nuclear)
- ・ファントム: MapPHAN 10cm(Sun Nuclear)

AP(10×10) 評価点線量検証

照射条件

- ・ガントリー、コリメータ、カウチ全て0°の1門照射
- ・照射野サイズ10×10
- 100 MU
- ・Isocenterはファントム中心(QAプランでの計画通り行う)

0.814 nC

AP(10×10) 評価点線量検証

TG-119ではAP-PAで基準ファクターを求めて、 線量に換算するよう指示している (エレクタではAPのみで実施)

① QAプランでのMean doseが81.1 cGyであった(スライド67ページ参照)

- ② 同様のセットアップで照射した値は0.814 nCであった
- ③ 81.1/0.814=99.63(cGy / nC)を得る
- ④ これにより1 nCあたりの1 cGyが換算可能となる この数値が基準ファクターとなる

基準ファクター: 99.63(cGy/nC)

TG119のテスト結果と比較する場合は、前項の基準ファクターを 用いて線量を算出しなければならない。 これを行うことにより、以下のメリットがある。

- ・治療装置の出力変動を軽減
- ・各種補正係数の不確かさにおける影響の軽減

※ 評価点線量検証は全て同日に行う (別日で行う際は基準ファクターを再測定する)

単純な照射野で線量分布に問題がないか確認する

94 | Focus where it matters

 γ Pass rate、プロファイル共に問題なし

Bands 線量分布検証

MLCモデルが正しいことの初期確認用の照射野である

 γ Pass rate、プロファイル共に問題なし

コミッショニングテスト 評価点線量検証 TG-119では吸収線量(cGy)で評価していない "Mean"という数値を使用している

 実測で得られたnCに基準ファクター をかけてMeasured doseを算出する
 下記の式に代入してMeanを求める Plan doseはMonacoでの線量、 Prescription doseは1回線量となる

MockProstate 評価点線量検証(Isocenter)

実測値1.698 nCであった。これに基準ファクターを掛けMeasured doseを求める 1.698(nC)×99.63(cGy/nC)=169.17 cGy

> Measured dose : 169.17 cGy Plan dose : 166.3 cGy Prescription dose : 180 cGy

$$Mean = \frac{[(Measured dose)-(Plan dose)]}{(Prescription dose)} = \frac{169.17 - 166.3}{180} = 0.016$$

97 | Focus where it mat 上記方法にて各プラン毎の測定点におけるMeanを算出する **③Elekta**

コミッショニングテスト 評価点線量検証

全てのMeanをエクセルシートに入力すると、自動計算でConfidence Limit が算出され、TG-119の結果と比較することができる。

Chamber type		Chamber volume				
Planned dose sho	ould be an average	over the chambe	r volume			
Chamber meas	urements					
Test	Location	Prescribed			High dose region	Lower dose region
		Dose/Fraction	Measured dose	Planned dose	(measured - plan)/prescribed	(measured - plan)/prescribed
MultiTarget	Isocenter					
	4 cm superior					
	4 cm inferior					
Prostate	Isocenter	8				
	2.5 cm posterior		-			
Head/Neck	Isocenter					
	4.0 cm posterior					
CShape (easy)	Isocenter	8				
	2.5 cm anterior		-			
CShape (hard)	Isocenter	13)				
	2.5 cm anterior					
				Mean	#DIV/0!	#DIV/0!
			S	tandard deviation	#DIV/0!	#DIV/0!
				Confidence Limit	#DIV/0!	#DIV/0!

※エレクタでの結果 ~評価点線量検証~

	Chamber measu	hamber measurements					
	Test	Location	Prescribed			High dose region	Lower dose region
			Dose/Fraction (cGy)	Measured dose (cGy)	Planned dose (cGy)	(measured - plan)/prescribed	(measured - plan)/prescribed
	MultiTarget	Isocenter	200	187.33	186.0	0.007	
		4 cm superior		107.96	106.1		0.009
		4 cm inferior		57.46	54.1		0.017
	Prostate	Isocenter	180	169.1	166.3	0.016	
		2.5 cm posterior		77.08	74.8		0.013
	Head/Neck	Isocenter	200	197.79	197.4	0.002	
		4.0 cm posterior		125.88	119.2		0.033
	CShape (easy)	Isocenter	200	45.3	42		0.017
		2.5 cm anterior		198.3	196.3	0.010	
	CShape (hard)	Isocenter	200	39.9	37.6		0.012
		2.5 cm anterior		197	190.9	0.031	
					Mean	0.013	0.017
					Standard deviation	0.011	0.009
					Confidence Limit	0.034	0.034
99 Focus where it					CL = mean + 1.96	σ	

Elekta

コミッショニングテスト 線量分布検証 <各門>

TG-119では、この検証において検出器や測定深の指示はない。 TG119での10施設のうち、7施設が実施した。そのうち5施設がMapCHECKで、 EPIDとFilmが1施設ずつであった。

エレクタではMapCHECH2を用い、水等価10 cm深にて実施した。

🕑 Elekta

γ Pass rateをエクセルシートに入力しMeanを求める。全てのMeanを入力すると、 自動計算でConfidence Limit が算出され、TG-119の結果と比較することができる。

100 | Focus where it matters

※エレクタでの結果 ~線量分布検証 <各門> ~

TG119では γ Pass rate を3mm/3%で解析しており、比較するためエレクタで も同様の条件で行った

Measurem	Measurement tool				
Software v	rersion	SNC Patient	Ver8.0		
Analysis parameters		TH10% Diff 3	% Dist 3mm		
Field-by-F	Field-by-Field				
% Gamma	a Pass				
Field	Multi Target	Prostate	Head/Neck	CShape (easy)	CShape (hard)
1	100	98.8	100	100	100
2	97.4	100	100	99.5	100
3	99.5	100	98.9	100	100
4	98.9	97.5	99.6	100	99.2
5	98.9	98.7	100	100	100
6	100	100	100	100	100
7	100	100	98.3	100	100
8			100	100	99.3
9			100	100	100
mean	99.2	99.3	3 99.6	99.9	99.8
	Overall Mean	99.	6		
	Overall Sigma		2		
C	Confidence Limit	1.71			
	CL = (100-mea	n) + 1.96 σ			

Elekta

101 | Focus where it matters

コミッショニングテスト 線量分布検証 <全門>

症例ごとに測定面が異なる。測定面の詳細はレポートもしくは下図の表を参照。 エレクタではフィルム解析装置を保有していないため、未実施である。

	Film measurer	nents in phantor	n
	Test	Plane	%Gamma Pass
	MultiTarget	Isocenter	
	Prostate	Isocenter	:
	8	2.5 cm posterior	
	Head/Neck	Isocenter	-
		4.0 cm posterior	
	CShape (easy)	Isocenter	
	6)-	2.5 cm anterior	
	CShape (hard)	Isocenter	
	22	2.5 cm anterior	
		Mean	#DIV/0!
		Sigma	#DIV/0!
		Confidence Limit	#DIV/0!
102 1		CL = (100-mean)) + 1.96 σ

γ Pass rateをエクセルシートに入力しMeanを求める。 全てのMeanを入力すると、自動計算でConfidence Limit が 算出され、TG-119の結果と比較することができる。

○ TG119の結果 ~評価点線量検証 高線量~

Test	Location	Mean	Standard deviation (σ)	Maximum	Minimum
Multitarget	Isocenter	0.001	0.017	0.030	-0.020
Prostate	Isocenter	-0.001	0.016	0.022	-0.026
Head and neck	Isocenter	-0.010	0.013	0.011	-0.036
CShape (easier)	2.5 cm anterior to isocenter	-0.001	0.028	0.038	-0.059
CShape (harder)	2.5 cm anterior to isocenter	-0.001	0.036	0.054	-0.061
Overall combined		-0.002	0.022		
Confidence limit=	$=(\text{mean} +1.96\sigma)$		0.045		

🕑 Elekta

施設毎の結果

TABLE VIII. High dose point in the PTV measured with ion chamber: [(measured dose) - (plan dose)]/prescription dose, averaged over all the test plans measured at each institution, with associated confidence limits.

	Institution										
	A	В	С	D	Е	F	G	Н	Ι	J	
Mean	-0.004	-0.012	-0.006	-0.007	0.017	0.002	-0.013	-0.014	-0.009	0.008	
Standard deviation (σ)	0.023	0.021	0.011	0.004	0.014	0.012	0.044	0.004	0.030	0.019	
Local confidence limit ($ mean + 1.96\sigma$)	0.049	0.053	0.028	0.015	0.044	0.026	0.098	0.022	0.068	0.044	
Number of measurements	6	6	5	6	5	3	5	6	6	5	

エレクタの結果: 0.034

○ TG119の結果 ~評価点線量検証 低線量~

全体の結果

TABLE IX. Low dose point in the avoidance structure measured with ion chamber: [(measured dose) -(plan dose)]/prescription dose, averaged over the institutions, with associated confidence limits.

Test	Location	Mean	Standard deviation (σ)	Maximum	Minimum
Multitarget	4 cm inferior to isocenter	-0.008	0.019	0.014	-0.050
Prostate	2.5 cm posterior to isocenter	0.000	0.018	0.030	-0.025
Head and neck	4 cm posterior to isocenter	0.004	0.024	0.061	-0.017
CShape (easier)	Isocenter	0.010	0.024	0.050	-0.037
CShape (harder)	Isocenter	0.009	0.025	0.055	-0.021
Overall combined		0.003	0.022		
Confidence limit ($ \text{mean} + 1.96\sigma)$		0.047		

施設毎の結果

TABLE X. Low dose point in the avoidance structure measured with ion chamber: $[(measured \ dose) - (plan \ dose)]/prescription \ dose, averaged over all the test plans measured at each institution, with associated confidence limits.$

	Institution										
	A	В	С	D	E	F	G	Н	Ι	J	
Mean	-0.006	-0.010	0.006	0.013	-0.005	n/a	-0.005	0.008	-0.008	0.045	
Standard deviation (σ)	0.007	0.018	0.034	0.006	0.013	n/a	0.005	0.024	0.014	0.021	
Local confidence limit ($ mean + 1.96\sigma$)	0.020	0.045	0.072	0.024	0.030	n/a	0.014	0.056	0.036	0.086	
Number of measurements	5	5	5	5	5	1	5	5	5	4	

○ TG119の結果 ~線量分布検証 <各門> ~

Test	Mean	Standard deviation (σ)	Maximum	Minimum
Multitarget	97.8	3.5	99.8	90.8
Prostate	98.6	2.4	100	93.3
Head and neck	98.1	2.0	100	94.2
CShape (easier)	97.4	2.8	99.8	93.0
CShape (harder)	97.5	2.6	99.9	94.0
Overall combined	97.9	2.5		

TABLE XIV. Per-field measurements: Average percentage of points passing the gamma criteria of 3%/3 mm, averaged over the test plans, with associated confidence limits.

	Institution										
	A	В	С	D	E	F	H				
Measurement device	Diode array	Diode array	EPID	Diode array	Diode array	Film	Diode array				
Mean	98.9	93.3	99.4	99.2	98.6	99.6	96.8				
Standard deviation(σ)	1.5	1.5	0.4	1.3	1.5	0.3	2.5				
Local confidence limit $(100 - mean) + 1.96\sigma$	3.9 (96.1%)	9.5 (90.5%)	1.3 (98.7%)	3.4 (96.6%)	4.3 (95.7%)	1.0 (99.0%)	8.1 (91.9%)				
Number of studies	5	5	5	5	4	4	5				

エレクタの結果:1.71

○ TG119の結果 ~線量分布検証 <全門> ~

1631	Location	Mean	Standard deviation (σ)	Maximum	Minimum	Number of submissions
Multitarget	Isocenter	99.1	0.9	100	97.5	8
Prostate	Isocenter	98.0	2.24	99.8	94.2	7
	2.5 cm posterior	93.2	7.6	99.9	85	3
Head and neck	Isocenter	96.2	3.0	100	92.4	8
	4 cm posterior	97.6	1.5	98.9	95.6	4
CShape (easier)	Isocenter	97.6	3.9	100	88.9	7
	2.5 cm anterior to isocenter	93.9	5.0	99.6	87.9	5
CShape (harder)	Isocenter	94.4	6.0	99.4	86.2	5
133	2.5 cm anterior to isocenter	93.0	7.2	99.9	81.3	5
Overall combined		96.3	4.4			

TABLE XII. Composite film: Percentage of points passing gamma criteria of 3%/3 mm, averaged over the test plans, with associated confidence limits.

	Institution									
	A	В	D	E	F	G	Ι	J		
Number of film planes	9	9	4	7	4	9	5	5		
Mean	99.5	92.6	99.9	97.6	98.0	93.0	95.8	97.5		
Standard deviation (σ)	0.4	4.3	0.3	2.3	1.1	6.5	3.6	2.9		
Local confidence limit $(100 - \text{mean}) + 1.96\sigma$	1.2(98.8%)	15.7(84.3%)	0.6(99.4%)	6.9(93.1%)	4.5(95.5%)	19.7(80.3%)	11.2(88.8%)	8.2(91.8%		

※エレクタでは未実施

7. まとめ

まとめ ①

- 本ガイドラインは患者個々の品質保証試験ではなく、IMRTのコミッショニングに焦点を当てている。参加した米国各施設のデータは、 その妥当性を判断するために役立つConfidence Limitを求めるために 使用された。自施設で得られたConfidence LimitはTG119グループの ものと同じかそれ以下でなければならない。
- TG119では評価点線量検証の高線量領域のConfidence Limitは4.5%、 低線量領域では4.7%であった。この結果はPaltaらの勧告¹と一致している。彼らは高線量低勾配領域で5%、低線量低勾配領域で7%のAction Levelを推奨した。

 TG119の輪郭は広いターゲットを有するわけではなく、エネルギー も6 MVのみのため、汎用性があるとは言えない。IMRTを開始する 前はTG119のみではなく、他のエネルギーの確認を含め、合理的な 模擬臨床症例でのテストが必要である。

Thank you

エレクタ株式会社 プロジェクト統括部アプリケーションフィジックス 〒108-0023東京都港区芝浦3-9-1 芝浦ルネサイトタワー7F エレクタケアサポートセンター:0120-911-477 Mail:SoftwareService-Japan@elekta.com URL:http://www.elekta.co.jp

